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I • GENERAL INTRODUCTION

,--The interatomic forces in a crystal are usually strongly depen-

dent on the interatomic spacing and consequently the lattice potential

energy for a crystal can generally be ,written as a power series in the

displacements of the atoms from their equilibrium positions. If such an

expansion is terminated at the quadratic terms, then this constitutes the

so-called harmonic approximation. In the harmonic ap,)roximation the lattice

vibrations are true normal modes such that if energy is channeled uniquely

into any one lattice mode. then it will teiain undissipated in that mode.

The harmonic approximation would therefore predict, fcr instance, that the

scattering cross section for neutrons by a Bravais lattice would consist of

a set of 8 function peaks or, analogously, that the spectral profiles of

lattice vibrations would be a set of undamped temperature independent reso-

nances. These and other such predictions are, of course, in marked d!icord

with experimental results. It is therefore clear that the anharmonic terms

in a lattice potential must be considered if a full understanding of many

of the physical properties of solids is to be achieved.

The inclusion of the anharmonic terms in a raatIce potential has

several consequences a.j far as phcnins are concerned. Firstly, the Phenom-

enon of thermal expansion is now allowed and this leads to so-called thermal

strain shits of the phonon energies away from their harmonic values.

Secondly, interactions between the normal modes can now occur and this opens

up channels for the decay of phonons which, in turn, causes additional so-

called anharmonic self-energy shifts of phonon energies away from their

harmonic values and the appearance of finite lifetimes for 
the phonons. (1'2 )

Thirdly, it opens up the possibility of interactions between certain phonons

ai
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and fluctuations in the phonon density distribution, (3 ,4 ) one of the ramif-

ications of which (under favorable conditions) can be the appearance of a

relaxing self-energy component for a mode, and it is this latter which is

predicted to lead to low-frequency structure in the response function for

the mode, which is now generally referred to as a central component.

Before proceediug further, it is useful to stress certain dis-

tinguishing features and certain common characteristics of these components.

The thermal strain component for a mode is a frequency independent quantity,

whereas the anharmonic self-energy and relaxing self-e'nergy cowr.: nents re

frequency dependent. The two latter, however, are differentiated in their

frequency dependence because the main structure in the anharmonic self-energy

12
occurs around 10 Hz whereas the central component arising from the relaxing

self-energy occurs at much lower frequencies, probably in the l06-109 Hz

range. The -entral feature which is common to all these components is that

they each can contribute to the temperature dependence of a mode, somet
4mes

in a dominant and Important way. In weakly anharmonic systems, like the

alkali halides for instance, the temperature dependence of all modes is

generally determined by the ccmpetition or enhancement between the thermal

strain ani the anharmonic self-energies; for such materials the magnitude

of both components for a mode is generally small compared to the harmonic

energy of the mode, so that the resulting temperature dependence is also

small. The effect of these two contributions, however, can be separated

because the probability for phonon interaction is determined by the thermal

population factors with the result that a phonon anharmonic self-energy will

contribute a temperature dependence even under isochoric conditions, which

is in contrast to that arising from the thermal strain component. For
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certain modes in more strongly anharmonic systems, such as the soft mode in

*displacive ferroelectrics, this marginal imbalance between the magnitude of

the thermal strain and anharmonic self-energy is broken, with the latter

becoming so large as to strongly dominate both the thermal strain and the

mode harmonic energy, which is imaginary, so that such systems are stabilized

in their paraelectric phase by these huge anharmonic 3elf-energy contribu-

tions to the soft mode. In certain other strongly anharmonic systems, like

piezoelectric hydrogen-bonded ferroelectrics, the relaxing self-energy can

also ontribuce importantly to the temperature dependence of the soft-mode

in that it can cause the mode to condense out below the characteristic

clamped-Curie temperature. In addition, the relaxing self-energy gives rise

to a temperature dependence of the central compoqent which is most pronounced

as the clamped-Curie temperature is approached.

These three components, the thermal strain, the complex anharmonic

self-energy ard the relaxing self-energy provide the general focus of the

scope of this final report. This focus is inexorably linked with the

ultimate goal of achieving a satisfactory understanding and characterization,

via theoretical descriptions, of anharmonic interactions, both wcak and

strong, and the role that these pla! in systems like ferroelectric materials.

Ferroelectric materials are of great interest, of course, because of Zha

enormous diversity and inter-relation of their physical properties which may

be harnessed to provide solutions to technological problems such as memory

function devices and the like.

Section II of this report is concerned with the determination of the

thermal strain component and, more importantly, of the frequency dependence

of the anharmonic self-energy and damping function of the q s0 transverse
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optic mode in simple ionic systems. Section III deals with an experimental

determination of the self-energy contributions associated with the soft mode

in displacive ferroelectric materials. Section IV describes optical and

dielectric investigations of the relaxing self-energy associated with the

soft mode in piezoelectric hydrogen-bonded ferroelectrics.
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II. WEAKLY ANHARMONIC SYSTEMS

A. Introduction

In describing the physical properties of a real anharmonic crystal

it is usual to resort to the use of perturbation :heory. While ordinary

perturbation theory has been used to describe anharmonic 
interactions,

(5 -7 )

more recent discussions have appealed to the techniques of quantum field

theory in whict the system is described in terms of the Green's functiens

or propagators for the system. The use of temperature-dependent time-

ordered Green's function. to describe anharmonic interactions between "ci.Caal

modes of vibration has been described by Maradudin and 
Fein ( I) and Cowley.

(2 )

These authors have shown that the dielectric and scattering properties (which

are of interest here) of an anharmonic crystal are dependent on the Fourier

transforms of certain time correlation functions, the simplest of which is

the one-phonin Ceen's function defined by

G(q,jj',t) - (TA(q,j,t)A*(q,j',O)> (1)

whcre the phonon operator A(q,J) is defined in terms of the sum of a creation

and destruction operator, T is the Dyson time-ordering parameter, and the

triangular parentheses represent thermal averaging. These Green's fvr'ctions

are period4 c in the complex time direction and can be expanded in a Fourier

series in that direction. The coeffi.ients of this series are

I ii
G(q,jjr) G(q,jj',t) e dt (2)

0

where l - I/kT, k being Boltzmann's constant, and 0 = 2nzi/5A, x being an

integer. The physical properties of the crystal can be obcained from these

coefficients, analytically continued over the whole of the complex ZQ plane.

~ a
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The coefficients are obtained from the use of diagrammatic perturbation

theory and the Dyson equation for the Green's functions obtained from these

diagrams is the matrix equation

E (([wh(qJ) 2 - C? jj + 2h(qJ)D(q,jj'.,))

X G(qJ'j',O) 6 (qi) (3)

where D(q,jj',Cl) is the anharmonic self-energy of the phonons. In the har-

monic approxi-ation the -elf-energy D(q,jj',O) is zero and the left-hand

side of equation (:) then plays the role of the dynamical matrix within the

harmonic approximation. In the anharmonic crystal the self-energy is not

zero and the matrix on the left-hand side of equation (3) couples phonons

from the dispersion branches J, j', and j' with the same wave vector. This

coupling will occur whenever the modes transform according to the same irre-

ducible representation of the space group of the crystals. The matrix

D(qjj',() has Hermitian and anti-Hermitian parts, the Hermitian parts

giving rise to a shift in the normal mode frequencies, and the anti-Hermitian

parts giving rise to a now finite lifetime for the phonon state. Formally

the anharmonic contribution to the Hermltian part of the self-energips of

the normal moues can be included by renormalizing the frequencies and eigCn-

vectors of the normal modes. If tha off-diagonal Hermitian terms in the

matrix equation are neglected, then the Green's function for the anharmonic

crystal becomes similar to that of the harmonic crystal if [ h(q,j)]2 is

replaced by Cw(q,j)] 2 such that £

[W(ql,j)]2 1 h(q,j)]2 + 2Wh (q,j)D(q,jj,0) , (4)
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where

D(qjj,O) - A(q,jjQ) - ir(q,jj,n) (5)

Detailed expressions for the self-energy D(q,jj',Cl) have been

evaluated by a number of authors.
(1'2'8 9 )  To second order in both cubic

and quartLc anharmonicity, the real part of the total anharmonLc self-energy

may be written

A(qvjj',Q) E ) (q,.jj + A (q,jj',L) , (6)

where &E(q,jj,) is the thermal-strain contribution giveci by

AE (q2jj E.V (qJ; -qj) UT (7)

and AT (q,JJ(I) is the anharmonic self-energy contribution given by

A (j A -A ',),()
A(q,Jj'Je) - ia (qjj,) + A (q,jj

where A A(q,jj') is a frequency-independent contribution and ZA(q,jj ,C) i3

a frequency-dependent contribution to A (qjj 1) given by

A (q,jja) (4)(q,jj') + & (8 )(qjjI) , (9)

with

A(4 (qjj") - L V(qj; q_'; ql~j, -qljl)(2n1 + 1) , (10

,(8)(qjj') - 4-4. E E V(qj; qj'; -qljl; -qlj)
-2 , q- J J2  3 J3  

2

+ n + 1 n -n

" V(qljl; "qlj2 q3J3 ; "13) h 2 h h
Wl +W 2  2l "

X (2n3 +l) , (1)



and

A(q,jj ) (6) (q,,) + A( 8 ) (q Jj 1,0) (12)

with

6(qjj,, - - L E E V(qj; qljl; -q. )1' R(Q) , (13)
h -lS J2 

A (8)(qjj',O) - 9-6 V(qj; q q2J2 ; q3J3) 12S(n), (14)- qrli S2j2 q 3j3

where

a 3 + n2 +1 1 + n2 + 1 2(n 1 - n 2 )(1
Shh - h h +  hR() 1 + u+ 2  O3-w I  "v O2 -w 1  + w 2

11 '2 +

S(M) [ [(n 1 + 1)(n 2 + 1)(n 3 + 1) - n2n3 hn0+ h 2h h
+ U)2+  + W3'

.hI 'h ' + 3rn(n - 1)(n 3 - 1)

" U" 2 u3

.(nl+ l)ann ". 1

1 h hh hh h
&W1h + W2 + W3h  + U 2 W3

(16)

The 1waginary part of the self-energy is given by

r(qjj',o) - r( 6) (q,jj' ,n) + r ( 8 ) (qjj',O) (17)

where

SA(q'jj$,n) - ( dr' (18)

In these equations the a's are phonon population numbers, the V coefficients

are the Fourier-transformed anharmonic force constants, and the superscripts
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on the A and r label that part of the quantity coming from the contributions

to that order in parameter p when the Hamiltonian is of the form

H = H0 + 1
3H3 + q

4H4  (19)

In this section of the report, we are concerned Qith the theoreti-

cal and experimental determination of the quantities defined by equations

(7), (8) and (17) determined at q t 0 and jith j = j' = t, chat is for zone-

cen':er transverse optic phonons in simple cubic ionic systems like the

alkali halides.

B. Numerical Evaluations of Self-Energy Components

As can be seen from the previous section, the self-ene.-gy com-

ponents of interest here involve complex lattice dynamical summation- which

require significant computational times even on today's high-speed computers.

As a result, reports of such calculatioLi' have been somewhat limited and to
' (2,10-14)

date have beca confined to a few simple ionic materials. (

Such numerical estimates of the different self-energy components

can be made providing the harmonic frequencies h (_,j) are known throughout

the Brillouin zone and provided the J coefficients can be evaluaLed. For

simple cubic materials like -he alkali halides reasonable lattice-dynamical

calculations of the dispersion curves throughout the Brillouin zone can be

made thus generating the eigenvectozs and eigenvalues necessary for the

evaluation of the lattice sums contained in equations (7)-(18). Alterna-

tively, these can be obtained by fitting measured low-temperature dispersion

curves to particular lattice-dynamical models. In order to evaluate the V

coefficients, certain assumptions must be made concerning the nature of the

forces that interact between the ions in the lattice. The procedure gener-

I



ally chosen is to assume a short-range central-force repulsive potential

and to ignore any anharmonicity in the Coulomb contributions to the lattice

potential because of the expected dominance of the former contribution (the

anharmonicity of the toulomb interactions can be included if necessary,

though).

The specifics of the various lattice dynamical calculations that

are used to generate the harmonic frequencies, w h (Z,'), and of the procedures

to evaluate the V coefficients are lengthy and, since they have been dis-

(2,10-16)cussed in the literature, we will not detail them here.

E A
This group has made numerical calculations of A (0,t), A (O,t,W)

and f(O,t,,) and their temperature dependence for all of the alkali halides.

In making our calculations of the principal parts and 6 functions occurring

in equations (7)-(18), we used the representation method suggested by

Maradudin and Fein, (I ) which involves the approximation

£(x)] - - i'6(x) = (x + ie) "  
, (20)

where c has a small but finite value. In our calculations (1 3  we used a

mesh of 8000 points in the Brillouin zone for F (6) (O,t,) and A (6)(O't,),

but only a mesh of 1000 points for the lengthier calculations of r" OltM

and A() (0,t,O). In general we used a value of e - 0.01 WL, where WL is the

value of the highest frequency in the Brillouin zone.

C. Experiuental Determinations of Self-Energvy Components

(1) Introduction

Under normal conditions, experimencal measurements do not lead

straightforwardly to a separation of the thermal strain and anharmonic self-

energy components. However, as Lowndes and Martin (1 7 ) first pointed out,

I " *1
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they can be separated out by a suitable combination of the constraint of

high pressure and variable temperature because the anharmonic self-energy

components will contribute a temperature dependence to a phonon energy that

occurs even when a crystal is maintained under isochoric conditions. Lowndes

and Martin(17) used this approach via high-pressure/variable temperature low-

frequency (_ 10 Hz) dielectric constant measurements to make first estimates

of the ther,'21 strain, E(o,t), and lo'w-frequency anharmonic self-energies,

AA(o,t,O), of the qts 0 transverse optic phonons in simple ionic solids. In

the course of the work covered by this final report, this group has
(14 .18 )

dev~1oped high-pressure far infrared techniques in order that a similar

approach via high-pressure/variable temperature far infrared measurements

could be made to make separate estimates of the thermal strain component,
E 1

S(O,t), and first estimates of the far infrared (- 10 Hz) anharmonic

self-energy components, A (o,t,'W ), of the q 0 transverse optic phonens in

the same simple ionic compounds.

But, as equations (8) and (17) show, the anharmonic self-energy

Lomponents are frequency dependent and their full frequency dependence

really needs to be determined in order to more fully test the current anhar-

monic Lneorles. To achieve this, one needs in principle to be able -o

measure the frequency dependence of both the real and imaginary parts of th-

mode response function via some convenient physical property. Unfortunately,

most measurements do not lead directl> to the form of both the real and

imaginary part of the system response (conventional power far infrared spec-

troscopy, for example, leads directly to only the reflection amplitude,

whereas the phase angle needs also to be determined in order to evaluate the

- - I
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real and imaginary parts of the dielectric response; similarly, inelastic

light-scattering techniques lead directly to only the imaginary part of the

susceptibility). Of course, in principle, such measurements can be used to

calculate the other component via an appeal to causality, such as when the

Kramers-Kronig relations are used, but such procedures have only limited

accuracy. One measuring technique which overcomes these problems is the

comparatively new and novel technique of dibpersive Fourier transform spec-

troscopy(l§,20) (DFTS), in which a sample is placed in one arm of a Michelson

interferomerer rather than outside it as in conventiczal spectroscopy. DFTS

leads directly to a simultaneous determination of the system reflection

amplitude and phase angle, and hence of the real and imaginary parts of the

dielectric response. This in turn can then be used to make determinations

A
of the frequency dependence of A (O,t,n) and r(o,t,n). During the work

L covered by this final teport, this research group, in collaboration with

Dr. T. J. Parker of the University of London, has developed and used this

technique to !ead to a determination of the full frequency dependence of

A (O,t,O) and r(0,t,n) for a number of simple ionic materials. (21)



(2) Determination of AE(Ot)-

The current theories of anharmonicity lead to the conclusion that

the quasi-normal frequency of a phonon measured in any resonance experiment

is given by

wr(~) h 2 h -AE
(Opt) W (Ot) + 2W (Ot)(A (Ot r' + A (,0) wt (21)

where the subscripts T and 0 denote tie operative Lemperature and pressure

of the system, respeztively. It is readily shown(11) that AE (Ot) is

determined by

L E t p(Ot) 2  
0 (Ot)2 (22)AE(o,t) . - (2

2woo(O,t)

where wO,0(Ct) has been taken as a ar.aicbl estimate of w h(O,t), and

,p(Ot) is the lattice vibration fr.-quency measured at a temperature T

and at a pressure P which is such as to reduce the volume of the crystal

to that which it has at 0 K aad zero pressure. The right-hand side of

equation (22) contains all experimentally measurable parameters thus

enabling an expe-imental determinatiun oZ AE (O,t).

A separate determination o2 AE (A,t) can be made as follows. At

- o, f(0,t,0) = 0, and the lattice contribution to the static dielectric

response can be written as

h 2 Sf0 2

C L (0) w U) %0 23c() h 2~ h A E (3
W (0,t) + W(0,t)[6 (0,t,O) + A (O,01J

Providing the oscillator strength S(0) 2 is reasonably temperature indepen-

dent, it is readily shown ( 1 7 ) that equation (23) leads to

o _
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E (O,t) WT 0 AC L 0)1T (24)
h 0 , 0 (0,t) C L0(0)

L
where the subscripts on w and c again refer to temperature and pressure,

respectively. Ac (0)]T is a measure of the change in e (0) on raising the

pressure isothermally at a temperature T so as to restore the volume of the

crystal to that which it has at 0 K and zero pressure. The approximation

sign used in this equation stems from two sources. Firstly, as discussed

above we have used values of the lattice vibration frequency determined at
h

close to T - 0 K and at zero pressure, w00 (O,t), to approximate w (0,t).

Secondly, it is assitmeo that S(O)2 is reasonaOly tempeiature independent;

justificaticn for this for temperatures up to 500 K nas been given by Lowndes

and Martin.(1 7) The right hand side of equation (24) contains all experi-

mentally measurable parameters and hence can lead to a second determination

E
of A (O,t).

In our work, we have determined AL(0,t) from both equations

(22) and (24) and have gererally found good agreement between the two

approaches.

The determination of A (O,t) by these two separate procedures there-

fore requires the measurement of the isnbaric (at 1 bar) temperaturp dependence

of wT,0(0,t) and the corresponding high-presbure and temperaturc dependence of

Tp(O,t) to determiue AE (o,t) from equation (22), and the additional reasure-
'TP

ment of the isobaric (I bar) temperature dependence of the dielectric response,

CL, (0), and the corresponding appropriate high pressure and temperature depen-

dence of L(0) to determine AE (o,t) from equation (24). The lattice vibration
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frequency for the _q 0 transverse optic mode in the alkali halides is most

conveniently studied via (conventional) far infrared spectroscopic trans-

mission measurements. This laboratory has developed high-pressure far

infrared techniques sufficiently so as to facilitate the necessary deter-

minations of WTO(Ot) and wT,p(Ot).

(3) Determination of A A(0, t ,Wt) and r(o,t,w )

At T =OK and at zero pressure, equation 21 becomes

[w0 0(0,t)] 2= [wh(Ot)]
2 + 2,Uh(ot>AOt,) (25)

where W = U 0 0 (0, t) (26)

while at a temperature T and a suitably chosen appJied pressure P so as to

maintain the crystal volume at that found for the crystal at OK and zero

pressure, equation 21 becomes
£WT? (0,)]2 = [wh(O t)]2 + ,wh(o't)A(0t,w) (27)

which leads to 2

EW (0,03] -]

A A (O,tW t) - '0 (23)
T t Q0 ' 2o) 0 0 (Or)

UT, P(Ot)] 2 - [ Wo0 (O 't)32T' 0 (29)

2wO0 (O, t)

-A'(T) (30)

Equation (30) therefore allows an experimental determinztion of

the change in the anharmonic self-energy between a temperature T and OK via

suitable studies of the temperature and pressure dependence of w(O,t).

a0(Ot Wt') is not necessarily zero because anharmonic interactions can per-

sist in the presence of zero point fluctuations. However, experimental esti-

Ar
mates of Ai (0,t ) can be made as follows. For temperatures close to theDebyemates 0 '% Ot

IJ
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temperature and above, it can be shown that the thermal population factors

vary linearly with T and also that the leading terms in both the cubic and

quartic anharmonic contributions to A(o, tW ) are linear in T. If such a

linearity is found for A'(T), therefore, extrapolations of these linear

parts back to T - 0 will yield an intercept of A0(O,t,wt) and hence

A
a T(0,t, t) can be determined from equation (29).

(4) The Determination of AA (O,tO) and P(O,t,0)

A simple cubic material, such as an alkzii halide, has a single

branch of transverse optic phonons and the lattice contribution to the

dielectric response at a frequency f0, cL (), is proportional to the Fourier

transform of the propagator for such phonons with Lhe wave vector2S 0. The

Fourier transform of the propagator leads to a complex lattice contribution

to the dielectric response at a frequcrcy 0 of thc form (1 '2 )

L h (0,t) S(0) (31)
h 2 h 2wh(Ot) + 2w (0,t)D(0,t,0/ - 2

where S(O) is the oscillator strength associated with the q 0 transverse

optic mode and is related to the effective dipole moment between the ions in

the crystal. The mode anharmonic self-energy and the damping can be expressed

in terms of :he dielectric response of the system as
(2 1)

A (0h (,t)ES(n))2W) +h - AE(oL) (32)A(o,t42) - {w ~~)sn2]()- 1]

W (Ot)

and

F(Otr) - ( 0h(Ot)"()S() 2  (33)
2

A- e
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where

e )- () 2 (34)

[c'(0) - j(-)]2 + e(02)
2

and

ll- () 2 + () 2  '(35)

where e'(Q) and e"(0) are the real and imaginary part, respectively, of the

(total) dielectric response of the system.

Equations 2 -35 reveal that experimental determinations of the

At
frequency dependence of A ,0,t,n) and f(O,tQ) can be made if valueb of

W h(Ot), S(9), 1'(9) and 1"(Z), and AE(Ot) can be determined. We have dis-

h E
cussed the determination of W (o,t) and A (Ot) in section C(2) above.

Bilz et al. (22 ) and Cowley (2 ) have shown that the oscillator

strength S(a)4 has only a very weak frequency dependence compared to that

arising from A (ot,O) and r(Ot,O). Furthermore, Lowndes and Martin (18'2 3 )

have sho.in that S(O)2 has only a very weak temperature dependence. At T = 0

and 0 = 0 the dielectric response described by equation (31) reduces to a
good approximntion to S(O)2 g CL(0) and so values of S(Q)2 may be obtained

to a gcod approximation from values of L(0) which have previously been

reported by this author.
( 18 )

Equations (34) and (35) rp':eal that the frequency dependence of

I1(M) and 1"(0) are determined by a knowledge of z'(0) and c"(0) and

(18,23)( e).. c(-) has little temperature dependence. We have used disper-

sive Fourier transform reflection spectroscopy (DFTS) to determine C'(0)

and e"(0) with high accuracy. DFTS will allow measurements of €'(Q) and

¢"(0) to be made simultaneously to an accuracy of + 2% throughout the far
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infrared region (5-600 cm - 1 ). It is to be noted here that the tempera-

ture measurements of e*(') and e'M() need to be determined only at zero

pressure in order to determine h A(O,t,) and r(O,t,).

(5) Experimental Techniques

A variety of experimental techniques were needed to measure

the variou., parameters required in the determination of L (0,t,o), r(0,t)

and A E(O,t) (see equatioas (32)-(35), (22), (24)). .E (0,t) was detauived

in two separate ways: through (convertional fai infrared Fourier transform

spectroscopic studies of the phonon frequency and through studies of the

low-frequency dielectric response, both made at high pressures and variable

temperatures. The determination of A A(0,tn) and f(O,t,O) required the use

of Dispersive Fourier Transform Spectroscopy to measure the frequency

dependence of the complex dielectric response.

(a) (Conventional) Fourier Transform Spectroscopy

Cubic ionic sotids like the alkali and thallium halides have

one q o 0 transverse optic mode which is most conveniently studied !y f, r

infrared spectroscopy. The frequencies and lifetimes of these modes are

readily determined from suitable measurements of the normal incidence

transmission spectra of thin films of the material under investigation.

Electromagnetic analyses of thin-film behavior shows that the minimum ir. the

spectral transmission for such a thin film occurs at w(Ot) - Lt providing

the film is thin compared to the vacuum wavelength of the incident radia-

tion.(2 4 ) A similar analysis reveals that 2P(O,t,w t ) is determined by the

• t
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spectral damping measured at a transmission T' where T' is given by

2T
To 01 + T (36)

0

with T0 being the transmission at w(O,t). The use of thin film transmission

studies, therefore, allows a direct determination of w(O,t) and 2r(0,t,w )

without lengthy analysis of the data, as would be required using rcflection

data from bulk samples.

Values of wT,o(O,t) and W T,p(0,t), which were required to determine

E (0,t) (see equation (22)), were mzasured by transmission studies cn thin

films using conventional far infrared Fourier Transformn Spectroscopy.

Values of wT,o (O,t) were also obtained from the far infrared DFTS measurements

(to be discussed belo;) made in reflection from bulk single crystals and

hence these allowed a check on these measurements. It is to be noted that,

because of severe technical problems, the DFTS technique cannot as yet be

used with samples under pressure and hence no check alues of wTp(Ot) were

obtained.

The measurements of w(0,t) were obtained by means of Fourier

Transform Spectroscopy using Michelson interferoraeers. A germani,,m bcivmeter

(Infrared Laboratories, Tucson) operating at 2 K, was used as a 6etector in
-l

the frequency range 3-300 cm ; a Golay cell was used at higher frequencies.

(b) High Pressure Fourier Transform Spectroscopv

The requirements of hydrostatic pressure containment and f3r-

infrared spectroscopy are some.,hat conflicting. The first requires small

apertures for maximum strength while the second requires large apertures to

provide maximum energy throughput from the comparatively weak far-infrared

sources. These requirements are further complicated because of the scarcity

of readily available window materials which satisfy the competing demands



-20-

of strength and transmissivity in the far infrared. As a result c' these

difficulties, much of the very limited far-infrared high-pressure research

has been confined to date to work achieved with the opposed diamond anvil

(25)
system. When used properly this cell is a powerful tool in the very-

high-pressure domain, but, in the important 0-10 Kbar range involved in the

present work, reliable far-infrared measurements are difficult to perform

with this cell. This is primarily because of the difficulty in accurately

determining the system operating pressure but also because of the inherent

difficulty of achieving true hydrostatic pressure conditions because of

residual pressure gradients across the an-il face . The consequencez cf

these problems have been that it ic difficult to precisely dete mine the

pressure dependence of mode eigenfrequencies, especially at the low pressures

necessary for the evaluation of up(Ot), and it is virtually impossible

to reliably measure the (small) pressure dependence of the associated line-

widths using the diamond anvil system.

Accordingly, this group has developed a high-pressure far-inirared

cell which goes some way to solving these problems,(26) and this is illus-

trated in figure 1. The cell body, window mounts, and reraining closures

were machined from 4340 alloy steel and then heat treated to a hardness of

RC45 giving a yield strength of 14 Kbars. The critical bores and z.rfaces

of the cell and its components were grouud and honed to size after the

hardentrg process. The cell body measures 17 x 14 X 10 cm and fully assem-

bled the cell has an effective speed of f2.4.

The window mounts used in the cell give a supported to unsupvorted

area ratio of about 3 with an unsupported port diameter of 5 mm. The window

high-pressure seal is achieved by lapping and polishing the mating surfaces

of the window and its mount to be flat and parallel to better than 300A.
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The windows are prevented from sliding off their mounts by brass retaining

rings attached to the window mounts. The window mount pressure seal is

achieved using a stainless-steel, brass, and Teflon packing assembly.

In choosing both the cell windows and the pressure transmission

medium, care must be used to avoid materials which have characteristic

electromagnetic resonances in the spectral region under investigation. The

choice of matprials available for both window and pressure transmission

media for far-infrared service is extremely restricted however. For windows
-I

we have used I-in.-thic r fused quartz for the spectral 
range below 125 cm

and 1-in.-thick silicon, for the spectral range 125-400 cm" . For a pressure

transmission medium we have used either helium or argon gas since these

exhibit no characteristic far-infrared resonances as do most of the organic

oils and molecular gases conventionally used in high-pressure research.

Figure 2 shows the experimental arrangement for a high-pressure

far-infrared transmission experiment. The high-pressure cell is located in

an isolated evacuated thick-walled module B designed to protect the inter-

ferometric and detector modules A and C, respectively. The cell window axis

is deliberately chosen to be off line with both the entrance and exit ports

to module B to avoid any possible damage to the interferometer or detector

due to a high-pressu.e window failure.

The hydrostatic pressure for these experiments was generated

from a two-stage gas compressor. The pressure was measured using a suitably

aged and calibrated ranganin cell. With this high-pressure spectroscopic

arrangement we were able to make spectral studies in the far infrared under

truly hydrostatic pressure conditions wi:h a pressure a~cu"racy of better

than + 1% whilst at the same time achieving signal-to-noise values of better

than 100.
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(c) Low Frequency Dielectric Constant Measurement

The low-frequency dielectric response, c(O), was determined via

three-terminal capacitance measurements made in the frequency range 1-100

kHz with a measuring accuracy of E0.1%. (1 7,23,27) The capacitance measure-

ments were recorded on a General Radio model 1615A transformer-ratio-arm

bridge used in conjunctioc, with a tuned amplifier and null detector. The

measuring electrodes were evaporated onto the single crystal samples using

gold as the electrode material.

(d) Dispersive Fourier Transform Spectroscopy

A
In order to determine the frequency dependence of A (0,t,Q) and

r(0,t,n) from equations (32) and (33), it is necessary to precisely deter-

mine the dispersion of e'(0) and e"(O).

The conventional method for determining C'(M) and c"(0) is to

measure the power reflectivity, R(O), at near nornl incidence over as wide

a spectral range as possible, and then to obtain the phase spectrum, CP(Cl),

by calculation from the Kramers-Kronig relation
(28 )

2 n, f dn' (37)

0

In this exprecsion r(Q)exp[i;(O)] is the complex amplitude reflection

coefficient and r(f) . From this c'(M) and e"(0) can then be obtained

from the Fresnel relations. The main problem with this procedure is that

the complete dispersion of R(Oj) must be measured, but this is often not

• _ -D
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possible especially if there is significant dispersion at very low-

frequencies (such as for soft modes) or at high frequencies, which

therefore necessitates other measuring techniques to be utilized to

complete the measurement of R(O). A second problem is that cp(n) is

not well determinee in those frequency ranges where r(D) - 0 because

of the inaccvracies in measuring the magnit-ide of i, ).

Conventional Fourier transform spectroscopy, as described

in a previous section, yields the power spectrum fro,' a sample

placed extrnally to the interferuneter. However, if the sample is

inserted in one arm of the Michelson interferometer, then it is

possible to perform amplitude-phase or dispersive Fourier transform

spectroscopy.(19 ,2 0 ) The asymmetric sample-interferogram from such

spectroscopy can be transformed into the npectral functions of the

phase and amplitude of the reflectance, from which the real and

imaginary parts of the complex dielectric response of the system can

be measured directly, and without having to measure the infinite

* spectrum. Furthermore, since DFTS measures r(n), rather than

2
r ( ) (R(.) as i.. conventional spectroscnpy, it has an auto.-tic

improvement in the accuracy of c'(Q) and "(O) which is especially

important as r(O) - 0.

The apparatus used by this group is illustrated schematically

in figures 3 and 4.(2 9 -3 1 ) The fixed mirror of the Michelson interferom-

eter is replaced by an optically flat reflector whose surface is divided

$
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up into an outer metallized ring C and two inner semicircular rings, one

of which, B, is metallized and the other is the sample. By an arrangement

of opaque screens each of these parts may in turn be used as the reflector.

In practice, the outer ring is first used to align the whole reflector so

that the incident beam is perpendicular to the surface. Since it has a

large radius it provides a readily reproducible alignment. Then a zecinen

interferogram is recorded with part A expcsed and a reference interferoEram

is recorded with part B exposed. The inteiferograms are Fourier trans-

formed and the educed specLra are ratioed to give the complex reflectivity.

To reduce systematic errors caused by a.-ymmetry between the two bides of

the instrument this output spectrum is re-ratioed against a ratioed cali-

bration spectrum obtained in a separate experiment with both parts A and B

metallized.

Although the specimen is on a collimated beem, the method is

2
suitable for measurements on fairly small samples of rea of 1 cm or

larger, which is satisfactory for all the materials studied in this research

* project.

The procedure of metallizing part of the sample surface for t'se

as a phase reference surface therefore allows tha sample temperature tc be

changee and overcomes the problems experienced 'y earlier workers u.ir DFTS

which cOLnfined their measurements to room temperature 
only. ( 1 9 , 2 0 , 3 2 3 4 )

The group at Northeastern University, in collaboration with Dr. T. J. Parker

of the University of London, has used this technique to determine cl(n)

and e'(C)) for several alkali halides (NaF, NaC1, KCL, KBr, KI', RbCL, RbBr

and RbI) in the range 100-300 K, and hence to determine AA (o,t,O) and

(21,35,36)
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D. Results and Discussion

a) Theoretical Calculations of A (0,tj2). p(O,tj) and AE(ot)

Figure 5 shows the frequency dependence calculated for the

different contributions to A (O,tjn) and r(0,t,() for NaBr and Figure 6

shows the calculated frequency dependence of A (O,t,fl) for NaBr at dif-

ferent temperatures. Such results are generally typical for all of the

alkali halides crystallizing in the NaCL structure.

Tables 1-4 summarize our calculated resulti.- for A E(Ot),

A(O,t,0), A (Otw) and r(0,t,wt) and their component contributions

for the lithium, sodium, potassium and rubidium halides, respectively.

The data for AA (O,t,wt) and r(O,t,wt) and their re.pective components are

given for the calculated value of wt.

An analysis of the data in Tables 1-4 reveals a number of over-

all qualitative features which should be cormiented on:

A
(i) The frequency-independent contributixn A (O,t) is always

dominated by the positive contributions from the first-orde. quartic term

A(4)(,t); A(8)(O,t) is always less than I0. of A (0,t) even above the

characteristic Debye temperature.

-:-A
(ii) A (0,t,0) is always dominated by the negative seccnd-

order cubic term A((,t,0). Although A(0,t,O) is generally less than

-A
107. of A (0,t,0) at low temperatures, it has a much stronger temperature

dependence and can be as much as 30. of A (o,t,O) at the characteristic

Debye temperature.

Lis
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(iii) AA(o,t,o) is always positive at low temperatures because of

the dominance of the first-order quartic term A(4)(0,t), but this usually

becomes negative at higher temperatures because of the stronger temperature

dependence of the negative contributions of A(6)(O,t,O), A(8 )(0,c) and

A(8) (o,t,o).

(iv) ZA(0,t,wt) is always dominated by the negative second-order

cubic term A(6)(0,t,w ). At low temperatures A(8)(O,t,w t) is always les

than 10% of ZA(o,t,w t) but because of a strong temperature dependence it

can be as much as 40% of ZA(O,t,w t) at the characteristic Debye temperature.

(v) AA(O,t,w ) can be either positive or negative at low tempera-
t

tures depending on the balance between A(4)(0,t) and A(6)(O,t,wt). At

higher temperatures , A(o,t,'wt) is gener:lly negative, however, because of

the stronger tempeiature dependence of the negativo contributions from

(vi) r(O,t,w t) is totally determined at low temperatures by the

second-order cubic terms, r(6)(0,t,W). However, (8)(O,t,wt) has a rLch

stronger temperature dependence than r(6)(o,t,w ) and both contribution: to

r(Ot,L)t) are generally very close in magnitude at the characteristic Debye

temperature.

b) Experimental Results for AA(O,t,O), AA(O,t,wt), r(O,t,w t) and AE(0,t,

Using the appropriate measurements of the temperature and pressure

dependence of w(O,t) and c(O), we have determined experimental values of

AE(o,t), AA(o,t,O) and AA(o,t,wt) via the procedures outlined earlier, and

. --
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these values are summarized in Tables 5-10 for the lithi n, sodium, potassium,

rubidium, cesium, and thallium and silver halides, respectively. Table 11

summarizes the temperature dependence of 2r(0,t,w ) for all these materials.

A number of qualitative trends emerge from these results: (i) the

A A(Ot'W) are generally quite small and are no more than a few percent of

MO. (ii) The A(Ot t) for the silver and alkali halides crystalliz-0o0(O T

ing in the NaCl structure are generally negative in sign at all teMpeiatures

and increase in magnitude with increasing temperature. (iii) The A (0,t, t)

for the thallium and alkali halides crystallizing in the CsCl structure may

be negative or positive at lower temperatures but are always positive at

Ahigher temperatures. (iv) The A (0,t,w ) have a smalier temperature depen-
T t

dence than AE(0,t) for all the materials studied except the thallium halides.

Tables 5-8 also compare the theoretical calculations and experimental

results for the anharmonic self-energies of the experimental lithium, sodium,

potassium and rubidium halides. The r- sults have allowed separate determina-

tions of AE(0,t) to be made at 0 = 0 and Q = wt . Ec-iation (7) shows AE(o,t)

to be a frequency-indcpendent quantity and the expcrimental results generally

support this within the limits of the experimental accuracy. The exceptions

to this are the results for the cesium and thallium halides at higher tem-

peratures, but these differences may i:,dicate the importance of the voiume

dependence of the dipole moments associated wiUt the transverse-optic modes

In these biterials which have been neglected in the determination of LE(^,t)

at S) 0. It is for this reason that the results for AE(O,t) determined at

S-Wt are considered more reliable, and a comparison of these with the theo-

retical results reveals a good agreement within the accuracy limits for all

the materials.

The results for AT(O,t,O) are qualitatively very good in that bothTf
experiment and theory show a reversal in sign as the temperature is raised,

Ii
-
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and furthermore show this reversal to take place at about the same tempera-

ture. Quantitatively, the low-temperature results are in good agreement for

all the materials and this reasonable agreement is maintained for the potas-

sium and rubidium halides at higher temperatures. For the lithium and

sodium halides, however, serious discrepancies arise between the two sets

of data at higher temperatures, with the calculated results showing a much

stronger temperature dependence.

The agreement between theory and experiment is less good for

AT(O tw ). Qualitatively, the experimental results suggest that the second-

A
order anharmonic contribucions always dominate so that AT(O,t,w ) < 0,

whereas the calculated results reveal that this is not always so at the

lower temperatures. Quantitatively, although the results for many of the

compounds agree within the error limitations, the experimental results gen-

erally tend to vary somewhat faster with temperature than the calculated

theoretical predictions. The preceding comments have been made for the

calculated values of AA(0,t,,Lt) determined at the calculated value of w

In order to test the sensitivity of the calculated values of A (Ot W ) to
T 'tA

any frequency dispersion, we have also listed values of AA(O,t,w t) calculated

at the experimentally determined values of w in Tables 5-8. With thE excep-

tion of the higher tEmperature data for LiBr and LiI (which in r.ny case must

be treated with some caution for the reasons given earlier),the two sets

of calculated values for %A(O,t,wt) are quite close and generally differ at

most by no more than + 15%. However, the values of AA(O,t,wt) cdlcuicted at

(W texp are generally in no better agreement with the experimental values

than the A (0,t w ) calculated at ( )T (rot talc"

The results for r(O,t,w t) show the theoretical predictions at low

temperatures to usually be somewhat smaller than the experimental values
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and, as the temperature is increased, to generally have a somewhat faster

temperature dependence than the experimental results. The calculated

theoretical results at the higher temperatures are generally in reasonable

agreement with the experimental results for the lithium and sodium halides

but are significantly bigger than the experimental results for the potassium

and rubidium halides.

The experimental studies of the preseure dependence of r(o,t,wt)

suggest thac its volume dependence is small. Equations (17) and (18) re-

veal that such a volume dependence can arise only from that of the anharmonic

coupling coefficients or Irom that nf the :h(q,j). We have attemrted to

calculate approximately what Eqs. (17) and (13) would predict for the volume

dependence of r(o,t,w ) for a number of alkali halides by allowing all thet

h
w (q,j) to have the same pressure dependence as that measured for u(O,t)

and by using values of r and 0 suitably corrected for the effects of pressure.

Such assumptions lead to the conclusion that r(O,t,w ) will always decrease

with increasing pressure by (1-2)% per kbar. Altho..gh the absolute magni-

tude of this calculated pressure dependenue for r(o,t,w t) is in agreement

with that found experimentally, these results do not explain the small in-

creascz with pressure found for r(O,, t ) for some materials.

The reason for the less gooa agreement between the calculated and

experimental anharmonic self-energies at Q = w. is not clear. The discrep-

ancy between calculation and experiment for r(o,t,w ) at low temperatures

could simply arise from an underestimate of r(6)(0,t,w t) or r(8)(O,t,w t ) or

from some sample artifact in the low-temperature experimental measurements:

this latter would seem most unlikely, however, in view of the equivalent

results that we obtain from single-crystal reflection measurements and thin-

film transmission measurements. The generally good agreement between cal-

A--
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culation and experiment for the higYer temperature r(O,t,w t ) for the sodium,

potassium, and rubidium halides suggests, but does not prove, that the cal-

culated form of A (0, t ,) may be correct; if this were true then this in

turn would suggest that the general disagreement between calculation and

experiment for A(O.t,wt) might arise from the calculation of AA(O,t) (see

Eq. (9)).

c) Experimental Results for AA(0,t,Q) and r(0,_t,2)

Figures 7-1.4 show the experimental determinations of the frequency

dependence of AA(0,t,Q2 ) and r(o,tm) for NaCl and RbCl at 105K and 30CK. In

all we have measured the frequency dependcnce of Lhe self-energies, as a

function of temperature, for NaF, NaCl, KCI, KBr, KI, RbCI, RbBr and Rbl.

Our results indicate that there is a reasonable qualitative agree-

ment, within experimental error, between the experimental and theoretical

values of the self-energies for all materials. Quantitatively, the rezults

are in very good agreement for the cubidiui and potassium halides, but there

are marked discrepancies between the two sets of data for NaF and NaCl, as

the figures show. It should be ncted that these measuLeert- are in good

agreement with our earlier measurements of the self-energies at specific

frequencies, i.e. AA(0,t,0), AA(O,t,w ) and r(o.t,wt).
t t

d) Conclusion

In assessing the obvious qualitative and quantitative agreement for

the calculated and experimental'determinations of these anharmonic self-

energies, it is useful to place in perspective the errors associated with

each kind of determination.

Given the approximations contained within the anharmonic theory, the
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errors associated with the calculated values of the anharmonic self-energies

h
stem primarily from those involved with the w (q,j) and the anharmonic force

constants. The errors associated with the w h(q,j) are difficult to assess,

but it can be stated that our lattice-dynamical calculations are in close

agreement with available low-temperature dispersion curves, reported from

inelastic neutron scattering experiments, with the most extreme diffcrences

being less than 10% over small regions of the Brillouin zone, and that an-

harmonic calculations for a few compounds using W h(q,,) values differing

uniformly by 10% throughout the Brillouin zone lea to only 1011 changes in

the real and imaginary anharmonic self-anergies. The anharmonic force con-

stants are sensitive to the input values of r and 9, and in both cases0

values of these at low temperatures are needed. Values of 5 are typically

determined directly at 4 K with an error of about ± 2%. Such an error in 8

will lead to errors of 2% or less in th.- various coefficients assocjat 4

with the anharmonic force constants. Although r0 is usually determined

quite precisely at 290 K to better than ± 0.1% via X..ray measurements,

values of r at lower temperatures are often not directly .i-asurcd but are0

determined from the known 290 K value of r0 and the known thermal-expansion

data. This leads to a typical error of about - 0.2% in r at 4 K. bush

an error will generate errors of between 6-10% for the various coefficicnts

assecLited with the anharmonic force constants. The accumulated errors

in these coefficients will, of course, lead to errors in the individual

contributions to the different total self-energy quantities. It should be

A isobane)a (8)
recalled that Y0,t,) is obtained as a sum of A ((t), A (0,t),

(6)(0,tC) and A(8)(O,t,Q.), and although the errors on the individual con-

tributions to the self-energy stemming from errors in r0 and $ are no larger

than about 10., the accumulated error on t4(0,t,Q) is considerably larger
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because of the opposite signs of these individual contributions and because

of the often close equivalence of the two dominant, but competing, terms

&(4)(O,t) and A(6)(O,t,f). However, r(O,t,P) is simply the sum of two

components, r(6)(0,t,R) and r(8)(o,tm), both of which are accurate to about

+6%, and hence the accumulated error on r(O,t,Q) will be smaller than that

for A T(O,t,Q). In Tables 5-8 we have listed our estimates of the possible

errors associated with the different calculated self-energy components based

on the known errors on r and a only.
0 E

The errors on the experimental determinations of A (O,t),

a (O,t,Q), and r(O,t,w ) can vary significantly. The errors on tie measured
T t

wT, (Ot) are generally quite small and at worst no larger than about +1%,

but the errors on wT,P (O,t) will be somewhat larger than this due to the

error in calculating P. The experimental and theoretical results strongly

suggest that the zero-temperature anharmonic self-energies are quite small,

so that the use of the approximation ,o (0,t) 5 wh(O,t) should not generate

errors of more than a few percent in the determinations. Consequently we

believe that the determinations of AE(C,t) and A'(T) are generally accurate

to better than +1.5 cm-1 . Of course, the determinations of A (O,t,w ) are
T t

somewhat worse than this depending on the accuracy of the extrapolation

procedure used to determine A (O,r,w ). The errors on the measured
0 t

r(o,t,w ) are determined to be no better than +15% for the longet phonon

lifetimes and no better than +25% for the shorter phonon lifetimes.

In conclusion, therefore, we have found a good agreemejjt between

theory and experiment concerning the sign, magnitude and temperature depend-

ence of q m 0 transverse optic phonon self-energies in a range of weakly

anharmonic systems. Although discrepancies do exist, they are generally

within the errors associated with either the calculations and/or the exper-
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iments. For the range of temperatures and frequencies covered by our work,

therefore, the current theories of weak anharmonicity appear to satisfac-

torily describe the anharmonic interactions in materials like simple cubic

ionic solids.



-34-

III. STRONGLY ANHARMONIC SYSTEMS: DISPLACIVE FERROELECTRICS

A. Introduction

Over the past two decades the existence of a soft mode has been observed

in many ferroelectric materials. Soft mode behavior, that is the rapid move-

ment to lower frequencies by a lattice mode as the temperature is decreased,

(37) (38)
was first proposed by Cochran and Anderson to explain the anomalous tempera-

ture dependence of the dielectric respolse of ferroelcctric materials.

As discussed in the carlier sections, the temperature dependence of any

lattice mode frequency arises through the anharmonic terms in the lattice

potentinl energy. As shown in the previous section, the hermitean self-energy

contributions to the normal mode frequencies in most systems are smaller than

the harmonic contributions. In displacive ferroelectrics, however, it was

theorized that the anharmonic contributions to the soft mode were larger than

the harmonic contributions and were thereby responsible for stabilizing the

paraelectric states. In this section we describe our experimental measure-

ments of the Le'oerature and frequency dependence of the self-energies asso-

ciated with the soft mode in displacive ferroelectrics which were the first to

directly confirm these theoretical predictions.

B. Experimental Results for A A(o~t0) and tr(o,t)

Cowley' has discussed the stahility of an anharmonic crystal using

the techniques of quantum field theory and has analyzed the dielectric response

of such an anharmonic crystal. The lattice contribution to the compie di-

electric constant at a frequency 9 is of the form
w h ( ° J ) 2 / 38

L (h) 1 j, (38)

w (o,j) + 2w (o,J)D(o,j,Q) - sl-

where w h(o,j) is the harmonic frequency of the jth q : o transverse optic

mode and f is its associated oscillator strength. In the following discussion
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we shall assume that the dielectric response is determined primr ily by the

summation term in equation (38) associated with the soft mode and shall ne-

glect contributions from the other q z o transverse optic phonons and any

temperature dependence of the f . The self-energy D(o,j,Q2) is defined by

equations 5-18 of the previous section.

At Q - o, the self-energy terms associated with the soft-mode can be

related to experimental parameters involving the lattice contribution to the

static dielectric response as follows:
(401

2h (ot) (t) AL(°) (39)
hffhi L39

w (o,t)2 + 2w hi, t)A (o,t,o) AC L(o)] + L (o)
Tp Ti

and

h (o't) + 2w h(ot)A(0'o ° ) Ti\ C (40)

h 2 h Ao) Lto L AT
h (o't) +2w h(°'t)' it,o) Ti(o)+A() A()]

where (o,t) de-notes the soft mode, Ae (o)] is the change in e (o) in raising

L
the temperature from Ti to TK isobarically at I bar, Ae (o)]T is the change in

E L(o) in raising the pressure isothermally at a temperature T so as to restore

the volume of the crystal to that which it has at T.K and I bar pressure, and1

AC (o)] is the change in c L(o) on raising the temperature T. to IK isobarically
T V 1

at the crystal volume at T.K and I bar pressure. The equations show that

suitable measuremerts of the temperature and pressure dependence of k;

therefore, will lead to assessments of the soft mode self-energy components.

Figures 15 and 16 show the results of such measurements for the tempera-

ture dependence of the soft mode self-energy cowponents for KTaO3 and SrTiO3.

An estimate of w h(o,t) 2 can be made from this data. At sufficiently high

temperatures, if the thermal population factors contained in the theoretical

% I
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expression for A (o,t,o) are expanded in terms of-hw/kT < 1, it is found that

the leading terms in both the cubic and quartic contributions to A A(o,to) are

linear in T. The temperature dependence of the function A(T) is shown in

figures 15 and 16 and does appear to be reasonably linear with tempera-

ture thereby implying a linear dependence of A A(o,t,o) on T. An extrapola-

tion of this linear part back to T = o should therefore yield an interept of

approximately Wh (o,t) 2/W Ti(o,t) 2. Using measurcL' low-temperature values of

WTi(o,t)2 of w 0(ot)2 = 0.35 X 1024 HI. for KTaO 3 and 2100(0,t)= 1.79X!( 2 4

for SrTiO3 yields values of W (o,t)2 = -0.004 X 1024 ;12 for KTaO3 and
wh(o,t)2 = -1.43 X 1024 for SrTiO3.

Our results imply, therefore, that the soft mode harmonic frequency in

SrTiO3, and probably in KTaO3, is imaginary and, furthermore, is stabilized

by the large anharmonic self-energy components 2wh (o,t)bA (o,t,o) which domi-

nate all the self-energy contributions combined.

AC. Experimental Results for A (o,t,S) and r(o,t,P)

Following the theoretical and experimental anaJ" ;es presented in sec-

tion II, we have also determined the frequency deperdence of the self-energy

terms 2w h(o,t)A A(o,t,Q) and 2w h(o,t)r(o,tS1) via Dispersive kourier Transform

Spectroscopy. The frequency dependence of the self-energies determined in

this way are shown for ITaO3 in figures 17 and 18. The results revenl

again that these soft mode self-energies are extremely large comparcd to those

found n.r. weakly anharmonic systems. In addition, these self-energies have a

strong temperature dependence throughout the frequency range covered. It is

of interest also to note that the determinations of 2wh(o,t)A(o,t,Q) aL

fl o determined from the static dielectric constant measurements discussed

in part B of this section are closely consistent with the values determined

via the DFTS measurements.
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IV. HYDROGEN BONDED FERROELECTRICS

A. Introduction.

Recent discussions of the transition in hydrogen-bonded ferro-

electric systems have examined the consequences of~ interactions between the

ferroelectric mode and fluctuations in the phonon density. Coombs and

Cowley~j have used a weakly anharmonic theory, within the framework of the

Landau theory of phase transitions, to consider the coupling of the ferro-

electr~c mode to fluctuations in the acoust~ic phonon~ density, and they find

a response function for the ferroelectric mode of

2 w.
G.i(W) = 2 . 2 3.(41)

W. y [ Z L /(l - iW7)]

Here w. is the harmonic ferroelectric mode wavenumber, w.i the renorinalized

ferroelecti>-,- mode wavenumber containing canventional anharmonic self-energy

.ontributions, y, the mode damping, ; an average lifecine for the acoustic

phonon density and L. is given by

72w iJV(l..1)j' n2 n + 1) (42)

where the V roefficients are second'-order cubic anharmonic coupling coef-

ficens ad he are thermal population factors. Young and Elliott (4 )

have extended the pseudospin model of Kcobayashi (4)to include coupling

between the soft pseudospin mode and fluctuations in the phonon density via

two-phonon terms in the Hamiltonian, and they find a response function for

the ferroelectric mode of

S2a-2 2 (ah (i -iay, - [ 4r(a)E/(l -iw;)]
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Here r is the energy of the pseudospin mode, (a x the thermal average of

the spin operator and L is given by

" ,2 i2n (n. + 1)L y Iv(°'l"1)I -k (44)

1,2

The responses from these two different theoretiual approaches are s=tructurally

identical, but differ from the characteristic response: of normal phonous by

the addition of a relaxing self-energy contribution. This has two important

consequences: it predicts the existence of a quasi-elastic central component

and the divergence of the ferroelectric mode susceptibility at a temperature,

TA, below the characteristic clamped Curie-Weiss temperature.

Attempts to determine the magnitude of the relaxing self-energy

have been made for a number of hydrogen-bonded ferroelectrics via experiments

to measure TA and via searches for the central component. The forner suffer

from the fact that the fe-rroelectric mode wavenumber ;s determined from

extrapolations of data which are deduced from fits to a simplified, and

possibly ambiguous, model involving the coupling of the ferroelectric mode
(42 -44)

to other phonons. Such experiments gener,.lly have led to the con-

clusion that, if present, the relaxing oelf-energy is quite small, but the

inaccuracy of the method often precludes a defiLitive statement as Lo whether

the rcledng self-encrgy is finite or not. Although Lagakos and Cu=inz(
44 )

have reported on a preliminary observation of a central component in

KH2PO4 (KDP) which also suggests that the relaxing self-energy is quite small,

the same authors(4 5 ) have found no evidence for a central component in

CsH2AsO4 (CsDA).
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The possibility of a separate determination of the magnitude of

(4)
the relaxing self-energy has been pointed out by Young and Elliott. They

have commented that the inclusion of spin-two-phonon coupling in their

Hamiltonian also causes a splitting of the E-modes in the ferroelectric phase

where the corresponding singly degenerate modes have symmetries of BI, B2.

This splitting will be in addition to any reststrahlen splitting, and may

be distinguished from it because their combined effect is dependent on the

propagation direction of the phonon. They predict the splitting to be given

by

A B 2 for k along (0,0,1) (45)

2 2 =S
WA - B  + fcr k along (1,1,0) (46)

2 2 4)4

WA 2 = (S4 + R for k along (1,0,0) (47)

2

where S is the relaxing self-energy spiitting,

s = 4 ,(oz)v(Oi2) (48)
2h

and R2 is the reststrahlen splitting,

R2 2 2
R 2 (49)

where WL and , are the zone-centre longitudinal and transverse optic wave-

numbers, respectively.

Suitable experimental measurements of any E-mode splitting,

therefore, can lead to separate estimates of the magnitude of the relaxing

self-energy. Such measurements can also lead to important information con-

cerning the central component because the anharmonic coupling coefficients

that determine the magnitude of the E-mode splitting are also related to the

behavior of the amplitude and wavenumber of the central component.
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The following sections describe laser-Raman investigations by this

(46)
group of such E-mode splitting in hydrogen-bonded ferroelectrics, the

results of which suggest that the relaxational processes responsible for the

central components have sufficiently long lifetimes as to make their obser-

vation feasible through electronic, rather than optical, techniques. The

final sections desrribe such a search via radio-frequency dielectric constant

measurements.

B. E-Mode Splittinr In -stigations

Figure 19 shows schematically the laser-Raman scattering geuxztries

used to study the E-r.ode splitting.

Figure 20 shows in detail the low low-frequency B1 , B2 spectra
*2

recorded in the ferroelectric phase of KDP, KDA and KD A for the three

scattering geormetries consistent with equations (45)-(47), and figure 21

shows the full BI, B2 spectra for RbDA and RbD A for t,'o of the scattering

gcometries. As these figures show, many, but not all, of the E-modes du show

definitive splittings arising from non-reststrahlen effects. For reasons we

have described elsewhere, (4 6 ) these splittings cannot arise from eithei

&train or birefrigence artifacts, and hence we belicve the splitring: to

originatc from the relaxing self-energy.

The response function given itt equation (43) leads to the conclusion

that the ferroelectric mode will condense out at a temperature TA such that

TA < T cX, where T cx is the clamped Curie temperature. A measure of the

relative strength of the relaxing self-energy to the mode total self-energy

is given by o, where

I 

[
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TX -T A

Tx (50)
T c

This response function also leads to a Debye relaxation form for the central

component of

Im G(W) = 4rc X W 2 * (51)
G(O) 2-2 2

where

A2-2-* , L 2 _ 1

2 4r(x)L wOc

and wc is the central component wavenumber. In the high-temperature limit,

equation (51) leads to the conclusion that w will have a temperature

dependence given by

(1- a)(T - T X) 1

c* _(52)
c [T T ( -C:))

c

whilst the amplitude of the central component will be gven by

Im G(wc) A n(l + C) (53)
- oY) (a + C) (3

where A l/k cX and e is given by

x
T T

c (54)
T

C

Analogous results to those given in equations (52) and (53) can also be

obtained from the response function given by Coombs and Cowley (3 ) for the

ferroelectric mode. However, it is to be noted that, although the two
x

theories both require the ferroelectric mode to condense out below T , the
C
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temperature at which this occurs is not necessarily the same because of the

different temperature dependence predicted for the ferroelectric mode by the

two theories.

The lack of information on T prevents any utilization of equation

(52) to assess the specific temperature dependence of wc . However, estimates

of the temperature dependence of the central component amplitude can be made

xvia equation (53) providing measurements o: T c  ard Q are available.

T c is readily determined with good precision via suitable dielec-

tric or elastic cnstant measurements. a iz given by zquation (50) and as(
4 )

Z(Vh1I (55a)

of VW1(55b)

P

where 6w1 is a mode splitting from the spin-two-phonon interactions for k

along (0,0,1) as given in equation (45). Although a can be determined via

equation (50), as mentioned earlier, such calculations are not reliable

because of the inaccuracies in determining TA. The fundamencal difficulty

with equaticxs (55a) and (55b) is that they cannot be applied to those modes

which are not doubly degenerate in the paraelectric phase and for which

splittings may thus not be observed. This requires, ultimately, that a be

estimated using equations (45)-(47) and (35) and a means of attributing

values to V(0,l,-l) for those modes where measurement is not possible.

Table 12 lists values of a, calculated in a number of different ways. cYE is

determined using only the measured E-mode splittings in equation (55b). S

is determined via equations (48) and (55a), by using the most consistent
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values of S2 determined from equations (46)-(47). It is to be noted that
S

there is little difference between aE and aE . and this reflects the close

fits of the experimental data to the form of equations (45)-(47). (a) and

(a)m are calculated on the assumption that all 48 phonon branches contribute

equally to a; (a) uies the observed slittings averaged over all 13 allowable

E-modes, whilst (a) uses the splittings averaged over only the observed
m

split modes.

Table 12 also contains estiL-tes of a determined via equation (50)

using data determined from studies of the temper-ature dependence of the

ferroelectric mode. Using measured values of T c (from Brody and Cummins
(4 7 )

for KDP and from Spillman and Lowndes (48 ) for the arsenate family), a anda

1p were then calculated using appropriate values of TA determined by fitting

the measured temperature dependence of the ferroelectric mode of these mate-

rials (Lowndes et al., (43)J. F. Ryan 19/Z (unpublished) quoted by Lagakos

and Cux nins ( 4 4) ) to the temperature dependence predicted by the theories of

Coombs and Cowley (3) and Yor.g and rlliott (4 ), respectively.

Inspection of Table 12 reveals a number of differences between the

two basic approa-hes to determining -ctirnates of a. Firstly, the a values

determined fron the E-naude splittings are consistently smaller than the values

determined from studies of the temperature dep2ndence of the ferroeleczic

mode. Secondly, for a given anion, the a values determined from the E-mode

splittings increase with increasing mass of the cation, whereas the reverse

is true for a a and ap. Thirdly, the a values determined from the E-mode

splittings are always positive, whereas a and ap are negative for the deu-

terated arsenates. As mentioned earlier, TA is difficult to determine

precisely, and this is especially true for the deuterated arsenates where two
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or more low-frequency optical phonons are coupled to the ferroelectric mode, 4 3 )

thus casting doubt on the adequacy of the two coupled oscillator fit used to

determine the fcrroelectric mode spectra characteristics from the Raman
x

spectra; we believe this is the reason for TA > T and hence for the negative
A c

values determined for a and a for the deuterated arsenates.

Because of these and other difficulties in precisely determining

the temperature TA at which the ferrceiectric mode condenses out, and because

TA and Tcx are apparerntly very close for the materi as considered here, we

believe that the a and yp values provide less reliable estimates of a than

those determined from the E-mode splittings. Although these latter do not

lead directly to an estimate of the total contributions to a, they do provide

a basis for establishing a range of possible values for a. For instance, 0E

* provides a reasonably precise lower bound on a since actual observed contri-

* butions are included in its calculation, .hilst (a)m provides a reasonable,

but less distinctive, upper linit on a.

Figure 22 shows the results of calculating the temperature depen-

dence of the central component amplitude for the hydrogenated materials using

E , (a) and (o)m for a in equaltion (53). Figure 23 shows the results of

bimilar calculations for the deuteratee arsenates. Although the quantitative

details vary somewhat depending on the particular value of a used, thc quali-

tative trends are very similar irrespective of the a value used. The central

feature of importance to emerge from these figures is that, although the

central component amplitude grows strongly as r x is approached, in all casesc

this growth is curtailed by the onset of the f&rroelectric transition. The

data indicate that, at the characteristic transition temperature, the largest

growth in the central component amplitude occurs for KDP and the smallest for



-45-

CsDA. This may be an important contributing factor in explaining why

Lagakos and Cumins ( 4 4 ,4 5 ) were able to find evidence for a central component

in KDP but not in CsDA. In commencing on their failure to find a central

component in CsDA, Lagakos and Cunmmins (45 ) have derived two upper limits for

a: firstly, a value of 10-4 for an unresolvably narrow central component,

and, secondly, a value oi 10- 2 for a central component linewidth exceeding

the free spectral rarge of their Fabry-Perot interferometer. The values of

o determI.ed here from the E-mode splittings are nicely bracketed by these

limits, but tend to support the larger value.

C. Radiofrequency Dielectric Constant Investigations

a) Experimental Studies

TUe light scattering measurements of Lhe E-mode splittings in

hydrogen-bonded ferroelectrics described in the preceding section suggest

that a central component may exist in these materials but: at frequencies

which may be too small to be resolved by optical measurements. Recent
(49) (50)

acoustic alcornation, electron spin resonance and electron para-

magnetic resonance (5 1) work also suggest that such relaxational processes

do occur but with lifetimes sufficiently long as to make their observatinn

feasible through electronic, rather Zhan optical, techniques. We have

therefore searched for the existence uf central components via radio-

frequency diclectric constant measurements.

In the paraelectric phase of KDP, the dielectric response measured

in the 5-80 MHz range exhibits no frequency dependence which would be charac-

teristic of a relaxation process and generally displays a temperature

dependence commensurate with measurements at lower frequencies. Within the
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sensitivity of our experiments, therefore, no significant evidence was found

for any contribution to the dielectric response in this frequency range

which arises from the existence of a central component.

However, as we have reported,(52 ) the response for CsDA in the

paraelectric phase does exhibit a marked frequency-dependent dielectric loss,

especially at the higher frequencies, for temperatres just above the tran-

sition. Unfortunately, the characteristic frequenctv of the mechanism

associated with the dielectric loss appears to be above the 80 MHz upper

limit ui our applied field frequency using this measuring technique. Although

el shows a continuous dectease with increasing temperattre from the transi-

tion at 149 X 5K, co, especially at the higher frequencies, first grows

rapidly as the temperature is raised from the transition and then decreases

with a further increase in temperature until it is barely measurable at

about 170K.

It is difficuit to conment on the origins of the mechanism causing

this dielectric loss in the absence of a full scan of its frequency dependence.

The results are unlikely to stem from impurities or defects in the sample

which typically lead to relaxation tines several orders of m-agnitue longer

than those that could be involved here. Rather, the results are more likely

to be intrinsically related to the onset of the transition, in view of the

growth of this dielectric loss as the transition temperature is approached.

Although the results could be interpreted as being consistent with the

findings of Lagakos and Cummins (in the sense that if the central peak for

KDP lies at a higher frequency than that for CsDA then the optical measure-

ments would be more favorable for studying the central peak in KDP and

the dielectric measurements for studying it in CsDA), the present data for

a!
I . .. .... - "-" "l l la n inn n
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CsDA would not seem to be described by a simple Debye relaxation form with an

amplitude growing continuously as the clamped Curie temperature at 126 K is

approached, as issuggested by the current theories.

The results for the ferroelectric phase of both materials also reveal

some significant dielectric behaviour which has not previously been reported.

For both materials, the dielectric response exhibits a pronounced dependence

on frequency which is well described by a Debye form of relaxation:

C(W) - C (w) + ie() =t(-E) + 1 + (56)

where E(w) is the complex aielectric response at a frequency w, c(') is the

complex dielectric response at w > 100 }-L.z, A is the amplitude and T the

characteristic relaxation time. Data at representative temperatures, to-

gether with their associated fits to the form of equation (56), are shown in

figures 24 and 25. Table 13 summarizes values of the parameters characterizing

the Debye relaxation process for both materials. Although the dielectric

relaxation occurs at somewhat lower frequencies for KnP than for CsDA, the

relaxation data for the two materials are qualitativaiy similar with the T

decreasing dramatically with increasing temperature in the range

T Z 0.8 Ttr to T : Ttr where Ttr is the transition temperature. Th? amvii-

tude also increases substantially over much of this same temperature

range but appears to level off close to the transition temperature for KDP

and to atually go through a maximum about.5 K below the transition tempera-

ture for CsDA. Two further aspects of these parameters should be noted.

Firstly, c(-) has a real part whose temperature depencence is weakly sug-

gestive of divergent behaviour but which is not described by a Curie-Weiss

behaviour, and an imaginary part which suggests a source of high-frequency

conductivity which is independent of the relaxation process. Secondly,
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values of T are well fitted by the thermal activation form

T 0 exp(E/kT)

with T 4.114 X 10-10 sand E 0.0466 eV for KDP, and T 1.586 X 10- 0 s

and E = 0.0603 eV for CsDA.

b) Theoretical Discu6sion

Almost simultaneously with our observation of the central component in the

power spectrum of homogeneous polarization fluctuations in the ferroelectric phase of

KDP and CsDA discussed above, Memelstein and Cummins (53)reported on a central compoVent

observed in the power spcctrum of polarisability fluctuations in the ferro-

electric phase of KDP.

Our subsequent analysis of the results for KnP (and by implication for

CsDA, etc.) suggests that both effects may be attributed to a homogeneous expo-

nential decay of the polarization. In our dielectric experiments, the response

of the polarization due to an applied electric field,

X(w) = (6P/6E)W + io + + (57)

was directly measured in the ordered phase of KH2PO4. In equation (44),

6P and 6E are in the direction of the spontaneous polarization. As reported,

the complex dielectric constant was well fitted by the simple form

XT ) (T < 7 (58a)

in the (M) 107 Hz range. The fluctuation-dissipation theorem fot polariza-

tion fluctuations

<JP 1 2 _ kBT I MX(Q()58b)
QW Ir W

may therefore be rewritten as a Lorentzian central component,

2 2
lim <lap - (kBTXT/)(/(l + (N))], (T < T ). (59)
Q-O
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The light-scatterin. rate in the low-frequency regime, w << (kTlii), is well

known to obey d2  2 (60)

d f dw f ct 'QW'

where w - clk 1, wf elkfI, ands,, £ represent the frequencies and polari-
i i f i f

zations, respectively, of the initial (i) and final (f) states.

Q=k -kfp Wi W WfP (61)

the polarization matrix elements of the fluctuar'Litg polarisability are

~fi *(2

and c is the speed of light in the fcrroelectric medi-Lum. Since we wish to

establish the exten't to which the experimental result in equation M) will be

observed by measuring the effect given by equation(60), we need to consider the

total light scattering into a given solid angle

dh(i- w~ 1~ 4 I fi 2 >(63')
d f(c)

With F as the free energy per unit volume. we have '

dF =-SdT +E -dP + IXdx 3  (64)

where X and x * are the stresi and strain components. A complete asse~ss-

ment of the conributions to light scattering arising from thermal fluctuations

will require the frllowing thermal re~ponst- functions to be cnidered:

CP -T(aS/3T) P (6 5a)

XCT - (3P/aE)TX, (65 b)

=(OPfax )TEX -(@x /9E) TEX. (65c)

and

O (x/at a. (65 d)
jk jakTEX (3k/3X T,EX

The following are valid as Q -~0:
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< AT I2 > "(kBT2/Cp~) (66a)

<,T AP > M 0, (66b)
Q dQ

<AT AX > = 0, (66c)

<AP > " k (66d)
-QQ B T

<AP*Ax > - kBTaj, (6 6e)
Q NjQZ

<AxJQ* kQ> - kBTXjk (66f)

Equations (66)represent a complete list of thermal fluctuations which can con-

tribute to light scattering.
fi

Expanding X in the local tlermal parameters T,P and strains {x.},
-,J

we get

fi fi fi fidx r idT + r dP + Jr. dx. (67)
T Pj .- J

which defines the r coefficients. The full static form factor from equations

(66) and (67) is therefore

2 rfi 2 kT2c fi *fi
lim <Axfii > " Ir T I (kBT /Cp,x +( pii)* " (k BTXT) (o,

+ (r i* (k TX )(rfi) + J[(rfirfi)

jk B jkk ,Lp

fi fi "'+ (r r ) .Ta. (68)

which may be substituted in equation (63) to give the total light-scattering

cross-section. To generalize the result to frequency power spectra via the

transformation
fi 2 fi 2 >

<IxQ2 > - lxj 12> (69)

one must replace the fluctuaticn matrix (equations 66)

•T
lim <L AY > - k (70)

Q- 0 JQkQ BTRjk'
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by dynamic fluctuations
, kET ,

<AYj Q YkQ, [R (Q) R (71)

-1 21 iw

leaving the r coefficients in equation (68) unchanged. The dynamical equiva-

lent of equations (65) must then be obtained:

C(q,w) = T(SS/6T)Q + io+  (72a)

X(QO) = (P/6E,, + io+ , (72b)

!! (Qw) - (Sxj/'E)Q,, + io +  (72c)

XjkCqI) I (Vj/6Xr Q,XK + io+ ' (72d)

Since Lhz derivation of the ten linearised equations required to evaluate

equations (72)is not necessary here, we will limit our eviluation of the con-

tributions to equation (68) to an estimation employing only thermodynamic

considerations.

(53)
Mermelstei. and Cummins attribute the central component observed

in their measurements to a thermal diffusiua mode. If one takes only the

first term in cur equation (68), their equation (11) is the result. Hence

they effectively write

(central co-onent) (w3 W/C)If T

(kBT-/nw)IM[l/C(Q,w)1, (73)

with a dynamic heat capacity of the thermal diffusive form

[Cpx/C(Qw ) ] Z [iDzQ2/(w + iDTQ2 ) 1 (74)

Here, DT K/C is the thermal diffusivity, and K is the heat conductivity.T Px

This yields a Lorenztian central component of width

l/TQ - Q  (75)
Q T

*%
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If the central component stems from the second term of equation (68)

we may write
3

d 2h W i~ k BT fj* fid-(central component) -m[ (76)
C

W3W 2
f ( )r fi . 6p, (77)

C .. 0 Q

From equations 59) and(77) one would then expect a Lorentzian central component

with a Q independent width of i/T. This would allow the observations of both

experiments to be described by the same microscopic physical process which,

however, cannot be unambiguously identified at this time.

First lpt us consider the width of the central omponent. The light-

scattering width agrees with both DTQ2 and the dielectrically-measured width

(which is obviously a Q = 0 homogeneous mode). One has two possibilities:

(i) The light-scattering central component arises from a thermal diffusion

mode with a width given by equation (75), while the polarisation central

component arises from some other mechanism. The similarity of the two line-

widths would then be puiely coincidental. (ii) Both central components have

the same phvsical source. Then the agreement with equation (75) is purely

coincidental. This dichotomy could be resolved experimentally, of course, by

changing Q in the light-scattering work and observing whether or not the

width appreciably changes.

Secondly, leL us consider the relative intensities of the scattered

light given by the first and second terms In equations (77). Th are

T a T 2

h(thermal diffusion) (7
- )Icf - (78)
Px 3 (78

h(polarisation) - -I(cf •T "i ) 
*" (f IT "i ) " (79)

An analysis of equation (78) has been carried out by Mermelstein and

• Ii
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Cummins(5 3 ) . An equivalent analysis of equation (79) is much more diffi-

cult in that (3/3P),T is a third-order tensor which has not (to our knowledge)

been directly measured. The depolarization effects will be substantial and

not qualitatively different from equation (77). For an estimate of absolute

size we take the Landau approach and expand the free energy in powers of P,

F(P,T) an(T) 2n (80)
nl

stopping at n = 2 for second-order and.n = 3 for first-order nhase trans'

tions, The a (T) which change sign at T = T are well known(5 4 . The co-

efficients are fit to E = 0 and (axT/aP) is estimated via equations (64) and
-TI

(80). Although this procedure is only a inugh approximation, it allows an

order-of-magnitude comparison between the light-scattering intensities

given by terms 1 and 2 of equation (68)
2

h(thermal diffusion) _ T -2 -l
H(polarization) 3 10 to 10 (81)

This suggests that the homogeneous polarization effects would dominate those

of a thermal diffusion mode if it were prerent, and hence supports our view

that the central components observed by the two techniques have the same

origin.

91
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Fig. 1. The high-pr~essure far infrared cell for transmission spectroscopy
in the frequency range 3-400 cm-1 and with hydrostatic pressures
up to 9 kbar. 'A, retaining closure; B, window mount; C, window;

D, packing; E, window retraining ring; F, gas input line.
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00

Fig. 2. The expertmental layout for high-pressure far infrared spectroscooy.
A, Michelson interferometric module; B, high-pressure cell module;
C, detector module; D, source; F, beam splitter; G, moving mirror;
H, high-pressure cell; I, module vacuum window; J, detector;
0, mirrors.
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AMPLITUDE-PHASE FOURIER SPECTROSCOPY

Fig. 3.

HH
H2

Fig. 3. Experimental layout of the dispersive Fourier transform
spectrometer.

Fig. 4. Schematic view of the sample and screens used with the dispersive
Fourier transform spectrometer.



-60-

0 (()

NoBr Na

-10 -'-- t4-"I *I
0 --00 !00 400 VIO 600 700 -0 O WO 300 400 500 600 700

WA& .. ,,NR (on') VAW NU BER (c'")

2(c (d)

2- NoB 4- No&r

*~I6

4 ~ 4

0 0 003:40 0 60700 1CO 200 300 '.0 130 600 700
W&. % , -'L, -, '" W.E-NM ,. 't--n")

Fig. 5. The calculated frequency dependerce of the different contributions
to A (O,t,CI) and r(o,t) for NaBr at 5 K (dashed line) and 300 K

(solid line).
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Fig. 6. The calculated frequency dependence of (a) A(0,t,2) and

(b) r(0,t,a) for NaBr at 5 K ( ), 200 K (-

400 K ( . . ), 600 K ( ... ), 800 K (- - -) and 1000 K (-).
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Fig. 7. The experimental (. • .and calculated (-) frequency
dependence of tA(0,t, ) for NaCL at 300 K. Also shown are
values of Ao,t, ) determined at C, ff 0 (0) from low-frequency
dielectric constant measurements, and at wt (Lx) from
far infrared transmission measureents.
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Fig. S. The experimental ( .. )and calculated (-) frequencydependence of AA(0,t,9) for NaCt at 105 .0

are values of &A(0,t=fl) determined at 0 (0) from low-
frequency dielectric constant measurements, and at 0 t A
from far infrared transmission neasurements.
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Fig. 9. The experimental (. * *) and calculated (-) frequency
dependence of tA(o,t,O) for RbCL at 300 K. Also shown are
values of AA(0,tC) determined at C = 0 (0) from low-
frequency dielectric constant measurements, and at
0 - w (A) from far infrared transmission measurements.
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Fig. 10. The experimental (•.)and calculated (-) frequency
dependence of AA(o,t,. ) for RbCL at 105 K. Also shown
are values of LA(o,t,n) determined at C -0 (0) from lo-

frequency dielectric constant measurements, and at
w tr (6) from far infrared transmission measurements.
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Fig. 11. The experimental (. • .) and calculated (-) frequency
dependence of r(0,t,0) for NaCL at 300 K. Also shown are
values of r(o,t,) determined at C - (A) from far
infrared transmission experiments. t
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Fig. 13. The experimental (' ) and calculated (-) frequency
dependence of r(0,tj) for RbCL at 300 K. Also shown are
values of r(o,t,) determined at C - wt (6) from far
infrared transmission experiments.
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Fig. 14. The experimental (* ) and calculated ( ) frequency
dependence of p(O,ti) for RbCt at 105 K. Also shown are
values of r(O,t,fO) determined at 0 - uit (A) from far
infrared transmission experiments.
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Fig. 15. The temperature dejendence of 2 , (O,t)A (0,t)

and [uJ(O,t)2 + 2w (O,t)4(O,t,O)] expressed
as a fraction of tlie quasi-normal soft mode
frequency (squared) at 0 K for KraO3 . The
broken line illustrates the extrapolation
used to deterine wh(o,t) 2 .
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Fig. 16. The temperatur deue3ndence of 2 w h(o, ) (O,t)
and [h(o,t)2 + 2wh(0,t)A(O,t,O)] expressed
ab a fraction of the quasi-normal soft mode

frequency (squared) at 0 K for SrTiO3. The
broken line illustrates the extrapolation
used to deter-iLmt: wh(o,t)2.
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Fig. 17. The frequency dependence of 2w (0,t)A A(0,t,Cn)
determined for KTaO3 at 100 and 300 K. The
values shownm aL. C = 0 are determined from our
dielectric rorstant measiurements (see reference
40).
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Fig. 18. The frequency dependence 
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Fig. 19. The three scattering geometries utilized
to study the E-niode splittings.
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Fig. 21. The B1 , B2 spectra recorded 
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(1,1,0) directions
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RbD*A.



-77-

2r.

B*1 I I
1 IkA RbDA K CsDA Fig.* 22(a)

so .100 120 140 130

Temp~m li'e IK)

24

2C I

-2 IFig. 22(b)
KDA RbDA KDP CsOA

100 120 60)
.Temperature 1K)

U I I f i i,
Fig. 22(c)

". 30

2- KOA RbOA K0P CsOA

10-

O 100 120 140 1wO

Temperature (k I

Fig. 22. The temperature dependence of the amplitude of the
central component for KDP, KDA, RbDA and CsDA
calculated from equation (53) using (a) o a Et
(b) a - (a), and (c) a = (a) . The broken lines
indicate the characteristic Terroelectric transi-
tion temperature for each compound and the dotted
lines the characteristic Tc
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Fig. 24. The radiofrequency dependence of (a) el and (b) to
for KDP at different temperatures in th ferroelectric
phase. The full curves represetL fits of the experi-
mental data to the Debye form of relaxation given in
equation (43). 4, 91.12 K; 0, 96.47 K; o, 103.36 K;
x, 110.46 K; A, 122.25 K. I
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Table 9. Experimental values, Icto" .of A'(O.t) andA/0.f. 0), determined at 0=0
and 0 - c',. for the cesium halides.

At(0, )) &A
- T(IC) 0-0 D=w, A 0.t,0) A (0.t. w z)

S 0 -1.1 -0.7
100 -1.6 -2.0 1.2 -0.1

CaCI 200 -2.9 -5.8 3.5 1.5

300 -3.8*0.4 -9.8 11.0 5.1 * 2.4 2.3* 2.0

S 0 0 0.4 -1.2
100 -1.2 -1.6 0.8 -0.2

Csr 200 -3.2 -4.2 1.7 0.6

300 -5.2 * 0.6 -6.8*0.? 2.6* 1.5 0.9* 1.5

5 0 0 0.2 0.5
i 100 -1.0 -1.4 0.5 1.3car 200 -2.3 -3.4 1.0 1.8

30 -3.7 0.4 -5.5* 0.5 1.4 1.3 2.2 1. 1

p 4"

r-_ ., ,,,- --- i
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Table 10. Experimental values, 10aC It Of &-(0, 'and AA4(0. tis), determiaed at fl ~0
and 0 -w,, for the silver and thalliumn halides.

- A2 (0. o
T (K) 11-0 e f(0. t. 0) A (O t, ~

5 0 0 3.5 - 4.5

AgcI 100 - 0.8 -1.7 0.3 - 5.3
200 - 3.7 -5.2 -2.1 -7.

300 - 8.8 2 0.8 -9.5* 1.0 -3.0:! 2.0 - 10.5:L 5. 0

5 0 0 3.0 - 1.4
1gr 00 - 0.6 -1.3 -0.3 - 2.0

A, 200 - 5.2 -4.6 -0.7 - 3.2

300 -11.2:k0.8 -8.6 *0.8 -1.2*k2.0 - 4.8 2.3

S 0 0 1.0 3.0

T I 100 - 0.6 -0.9 3.9 4.5
TIi 200 - 3.4 -4. ' 7.1 8.4

300 - 4.6 0.7 -8.3*1LA 10. 8*2. 0 12.6 ±2.1

5 0 0 1.0 3.0
Tlr 100 - 0.6 -0.6 3.1 4.4

200 - 2.0 -3.5 6.0 8.6

300 - 4.3± 0.6 -7.6± 0. 9 8.8± 2.0 12.8± 1. 8
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Table 11. Measured values of the temperature and pressure
dependence of 2r(O,t,wt) for the alkali and heavy
metal halides.

d2r(0,t co|) (mtbrX
2r(o,t, w t) (cm

- 1
)  dP (m'br

T 2 90 200 290 290

LIF 7.3:3.2 !').4+2.9 13.9*2.3 17.1*1.9
LICI 14.4 ±1.4 17.4 ± 1.4 23.1 * 1.4 34.5 * 1.4
Lilar 15.3*3.8 0.5*4.7 26.8*4.6 34.6*5.4
LiI 25.0*4.7 27.9k4.7 35.0*7.5 39.7*8.8

i&AF 6.5*1.3 10.4*2.1 12.7* 2.1 16.8*2.0 8.10*0.07
NMCI 2.5*0.7 3.. -0.7 5.3*0.5 7.0*0.5 -0.50*0.13
NaBr 3.4*0.9 4.3*0.7 7.0*0.7 8.4* 0.7 -042* 0.14
NaI 4.3*1.3 6.1*1.9 9.5*3.0 13.7*2.9

KF 11.9E2.1 14.0*2.1 16.6*2.1 19.0*2.4
XCI 1.4*0.6 1.9 *0.4 3.4*0.5 4.5* 0.4 -0.08 *0.07
KBr 0.9*0.5 1.6 *0.4 2.8*0.2 4.7*0.2 -0.03. 0.03
ja 2.0*-0.6 2.7*0.5 5.0*0.5 6.2 *0.5 0.03+0.02

RbF 6.4-:0.9 7.4*11.2 9.6*1.3 10.9*1.3
RbCI 2.5 - 0.4 3.1 *0.4 4.0* 0.4 4.8 *0.4 -0.04 - 0.03
RbBr 1.3&0.3 1.7 *0.3 2.4*0.3 3.0*0.3 0.14 *0.11
RbI 1.1 *0.2 1.4*0.2 2.1*k0.2 2.8*0.2 0.12*0.04

CsF 9.2 *1.4 9.9*2.0 16.2*2.0 19.7*2.0
CSCl 3.4*0.5 3.7*0.5 5.1 *0.5 6.1 *0.5 -0.02*0.02
CsBr 1.5-0.2 2.3*0.2 3.1*0.2 4.0*0.2 -0.04 * 0.02
Cs 1.0=0.2 1.4*0.3 2.1 *0.3 2.6+0.3 -0.04 *0.02

AgI 3.5=0.5 6.0:0.5 9.5*0.5 13.2±1.0 0.02 * 0.01
AgBr 2.5=0.5 4.5*-0.5 8.5*0.5 13.2* 1.0 0.04 * 0.02

TICI 4.0=0.5 5.0*0.5 6.3*0.5 7.7*0.5 -0.05±0.04
TLBr 2.7 = 0.3 3.0*0.3 3.5*0.4 4.0*0.4 -0.03 *0.02
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Table 12. The different values of a determined as defined in
the text. Note that the errors quoted for a. and
'Y reflect only the inaccuracies involved in the
linear extrapolation of the ferroelectric mode
spectral characteristics and do not contain any
estimate of the inaccuracy of the fitting procedure.

C X 10s OP X 102 Gas X t' d4 ,, 101 .1> X 10' (2)>. X 1os

ICDP 67 6"7 020 C02 025" 003 0"51 2"06
KDA 5-4 ±04 306± 3-1 010 ±002 0-10± 002 V30 061
RbDA 36 ±02 11-1 09 023±t005 0-26 ±005 084 1.88
CsDA 024 01 1-1±&I1 047 -003 -52+ 003 1.11 2-51
KD*A --5-6 ±04 -6-8 ±03 039 003 0-43 001 0-70 1-95
RbD*A -7-0 ±0-2 -50 ±0-2 "3 002 0-75 "003 1-50 4-18
CsD*A -7"3 ±01 -5-4.0"1 05±00 073± 0-03 0-75 301

I.
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Table 13. Values of the parameters characterizing
the Debye relaxation process in the ferro-
electric phase of KDP and CsDA determined
from fits of the experimental data to the
form of equation (43). The transition
occurs at 122.4 K and 149.5 K in KDP and
CsDA, respectively

T "(z) A t
(K) (MHz)

122.35 446-3 38.6 914-6 30-78
120.53 339-9 51"0 917.4 27.99

118-89 283-9 59-6 695 3 26-71
117-13 255-6 60.1 892-4 21-23
115-55 279-1 101.5 7967 21-31

KDP 114-06 251-2 92-7 8S.1 20-73
110-46 230-8 101-2 7631 18"07
106-93 197-2 88.2 751-7 15-63
103-36 172-8 95.2 617-8 13-39
98-47 117-7 45-2 340,0 19-13
91-12 46-i 16-5 489 18-84

149-47 89-8 1-7 91-0 75-39
146-73 39-7 2-9 112-0 52-60
144-42 31-3 1-2 12:-7 45-04
141"74 25-7 17 121-1 41-52

GsDA 138-75 23-3 4-8 111.5 38-C(
133-78 21-9 7-1 98-5 31-92
128-76 26-2 10-9 5&-0 2621
126-41 24-3 9-7 37-8 24-78
123-85 21-9 8-2 16-6 25-93

aI
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